Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1268243, 2024.
Article in English | MEDLINE | ID: mdl-38606299

ABSTRACT

Introduction: Crohn's disease (CD) is a chronic inflammatory bowel disease, of which the etiology involves genetic, environmental and microbial factors. Adherent-invasive Escherichia coli (AIEC) and polymorphisms in autophagy-related genes have been implicated in CD etiology. Autophagy is a key process for the maintenance of cellular homeostasis, which allows the degradation of damaged cytoplasmic components and pathogens via lysosome. We have shown that a functional autophagy is necessary for AIEC clearance. Here, we aimed at identifying the autophagy receptor(s) responsible to target AIEC to autophagy for degradation. Methods: The levels of autophagy receptors p62, NDP52, NBR1, TAX1BP1 and Optineurin were knocked down in human intestinal epithelial cells T84 using siRNAs. The NDP52 knock-out (KO) and p62 KO HeLa cells, as well as NDP52 KO HeLa cells expressing the wild-type NDP52 or the mutated NDP52Val248Ala protein were used. Results and discussion: We showed that, among the tested autophagy receptors (p62, NDP52, NBR1, TAX1BP1 and Optineurin), diminished expression of p62 or NDP52 increased the number of the clinical AIEC LF82 strain inside epithelial cells. This was associated with increased pro-inflammatory cytokine production. Moreover, p62 or NDP52 directly colocalized with AIEC LF82 and LC3, an autophagy marker. As the NDP52Val248Ala polymorphism has been associated with increased CD susceptibility, we investigated its impact on AIEC control. However, in HeLa cell and under our experimental condition, no effect of this polymorphism neither on AIEC LF82 intracellular number nor on pro-inflammatory cytokine production was observed. Together, our results suggest that p62 and NDP52 act as autophagy receptors for AIEC recognition, controlling AIEC intracellular replication and inflammation.


Subject(s)
Crohn Disease , Escherichia coli Infections , Humans , HeLa Cells , Intestinal Mucosa/metabolism , Escherichia coli Infections/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Autophagy/physiology , Cytokines/metabolism , Bacterial Adhesion
2.
Gut Microbes ; 16(1): 2320291, 2024.
Article in English | MEDLINE | ID: mdl-38417029

ABSTRACT

Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Peptides , Polyketides , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Tumor Microenvironment , Drug Resistance, Neoplasm , Mutagens/metabolism , Neoplasm Recurrence, Local , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Polyketides/metabolism , Lipids
3.
Gut Microbes ; 16(1): 2310215, 2024.
Article in English | MEDLINE | ID: mdl-38374654

ABSTRACT

Human colorectal cancers (CRCs) are readily colonized by colibactin-producing E. coli (CoPEC). CoPEC induces DNA double-strand breaks, DNA mutations, genomic instability, and cellular senescence. Infected cells produce a senescence-associated secretory phenotype (SASP), which is involved in the increase in tumorigenesis observed in CRC mouse models infected with CoPEC. This study investigated whether CoPEC, and the SASP derived from CoPEC-infected cells, impacted chemotherapeutic resistance. Human intestinal epithelial cells were infected with the CoPEC clinical 11G5 strain or with its isogenic mutant, which is unable to produce colibactin. Chemotherapeutic resistance was assessed in vitro and in a xenograft mouse model. Expressions of cancer stem cell (CSC) markers in infected cells were investigated. Data were validated using a CRC mouse model and human clinical samples. Both 11G5-infected cells, and uninfected cells incubated with the SASP produced by 11G5-infected cells exhibited an increased resistance to chemotherapeutic drugs in vitro and in vivo. This finding correlated with the induction of the epithelial to mesenchymal transition (EMT), which led to the emergence of cells exhibiting CSC features. They grew on ultra-low attachment plates, formed colonies in soft agar, and overexpressed several CSC markers (e.g. CD133, OCT-3/4, and NANOG). In agreement with these results, murine and human CRC biopsies colonized with CoPEC exhibited higher expression levels of OCT-3/4 and NANOG than biopsies devoid of CoPEC. Conclusion: CoPEC might aggravate CRCs by inducing the emergence of cancer stem cells that are highly resistant to chemotherapy.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Peptides , Polyketides , Humans , Mice , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Epithelial-Mesenchymal Transition , Mutagens/metabolism , Polyketides/pharmacology , Polyketides/metabolism , Disease Models, Animal , Neoplastic Stem Cells/metabolism
4.
Gut Microbes ; 15(1): 2229569, 2023.
Article in English | MEDLINE | ID: mdl-37417545

ABSTRACT

Colorectal cancer (CRC) patients are frequently colonized by colibactin-producing Escherichia coli (CoPEC) (>40%), which enhances tumorigenesis in mouse models of CRC. We observed that 50% of CoPEC also contains the cnf1 gene, which encodes cytotoxic necrotizing factor-1 (CNF1), an enhancer of the eukaryotic cell cycle. The impact of its co-occurrence with colibactin (Clb) has not yet been investigated. We evaluated the impact of CNF1 on colorectal tumorigenesis using human colonic epithelial HT-29 cells and CRC-susceptible ApcMin/+ mice inoculated with the CoPEC 21F8 clinical strain (Clb+Cnf+) or 21F8 isogenic mutants (Clb+Cnf-, Clb-Cnf+ and Clb-Cnf-). Infection with the Clb+Cnf- strain induced higher levels of inflammatory cytokines and senescence markers both in vitro and in vivo compared to those induced by infection with the Clb+Cnf+ strain. In contrast, the Clb+Cnf- and Clb+Cnf+ strains generated similar levels of DNA damage in HT-29 cells and in colonic murine tissues. Furthermore, the ApcMin/+ mice inoculated with the Clb+Cnf- strain developed significantly more tumors than the mice inoculated with the Clb+Cnf+ strain or the isogenic mutants, and the composition of their microbiota was changed. Finally, rectal administration of the CNF1 protein in ApcMin/+ mice inoculated with the Clb+Cnf- strain significantly decreased tumorigenesis and inflammation. Overall, this study provides evidence that CNF1 decreases the carcinogenic effects of CoPEC in ApcMin/+ mice by decreasing CoPEC-induced cellular senescence and inflammation.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Gastrointestinal Microbiome , Mice , Humans , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Colon , Carcinogenesis , Cell Transformation, Neoplastic , Inflammation
6.
Microbiome ; 11(1): 12, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670449

ABSTRACT

BACKGROUND: The plasmid-mediated resistance gene mcr-1 confers colistin resistance in Escherichia coli and paves the way for the evolution to pan-drug resistance. We investigated the impact of mcr-1 in gut colonization in the absence of antibiotics using isogenic E. coli strains transformed with a plasmid encoding or devoid of mcr-1. RESULTS: In gnotobiotic and conventional mice, mcr-1 significantly enhanced intestinal anchoring of E. coli but impaired their lethal effect. This improvement of intestinal fitness was associated with a downregulation of intestinal inflammatory markers and the preservation of intestinal microbiota composition. The mcr-1 gene mediated a cross-resistance to antimicrobial peptides secreted by the microbiota and intestinal epithelial cells (IECs), enhanced E. coli adhesion to IECs, and decreased the proinflammatory activity of both E. coli and its lipopolysaccharides. CONCLUSION: Overall, mcr-1 changed multiple facets of bacterial behaviour and appeared as a factor enhancing commensal lifestyle and persistence in the gut even in the absence of antibiotics. Video Abstract.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Animals , Mice , Escherichia coli/genetics , Symbiosis , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests
8.
mBio ; 12(4): e0145121, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34425698

ABSTRACT

The emergence of multidrug-resistant Escherichia coli ST131 is a major worldwide public health problem in humans. According to the "one health" approach, this study investigated animal reservoirs of ST131, their relationships with human strains, and the genetic features associated with host colonization. High-quality genomes originating from human, avian, and canine hosts were classified on the basis of their accessory gene content using pangenomic. Pangenomic clusters and subclusters were specifically and significantly associated with hosts. The functions of clustering accessory genes were mainly enriched in functions involved in DNA acquisition, interactions, and virulence (e.g., pathogenesis, response to biotic stimulus and interaction between organisms). Accordingly, networks of cooccurrent host interaction factors were significantly associated with the pangenomic clusters and the originating hosts. The avian strains exhibited a specific content in virulence factors. Rarely found in humans, they corresponded to pathovars responsible for severe human infections. An emerging subcluster significantly associated with both human and canine hosts was evidenced. This ability to significantly colonize canine hosts in addition to humans was associated with a specific content in virulence factors (VFs) and metabolic functions encoded by a new pathogenicity island in ST131 and an improved fitness that is probably involved in its emergence. Overall, VF content, unlike the determinants of antimicrobial resistance, appeared as a key actor of bacterial host adaptation. The host dimension emerges as a major driver of genetic evolution that shapes ST131 genome, enhances its diversity, and favors its dissemination. IMPORTANCE Until now, there has been no indication that the evolutionary dynamics of Escherichia coli ST131 may reflect independent and host-specific adaptation of this lineage outside humans. In contrast, the limited number of ST131 reports in animals supported the common view that it rather reflects a spillover of the human sector. This study uncovered a link between host, ST131 population structure, and virulence factor content which appeared to reflect adaptation to hosts. This study helps to better understand the reservoir of ST131, the putative transmission flux, associated risks and the evolutionary dynamics of this bacterial population and highlights a paradigm in which host colonization stands as a key ecological force of the ST131 evolution.


Subject(s)
Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Evolution, Molecular , Genome, Bacterial , Animals , Birds/microbiology , Dogs/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/physiology , Escherichia coli/pathogenicity , Escherichia coli/physiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Global Health , Host-Pathogen Interactions , Humans , Male , Mice , Virulence Factors/genetics
9.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805299

ABSTRACT

BACKGROUND: Adherent-invasive Escherichia coli (AIEC) have been implicated in the etiology of Crohn's disease. The AIEC reference strain LF82 possesses a pathogenicity island similar to the high pathogenicity island of Yersinia spp., which encodes the yersiniabactin siderophore required for iron uptake and growth of the bacteria in iron-restricted environment. Here, we investigated the role of yersiniabactin during AIEC infection. METHODS: Intestinal epithelial T84 cells and CEABAC10 transgenic mice were infected with LF82 or its mutants deficient in yersiniabactin expression. Autophagy was assessed by Western blot analysis for p62 and LC3-II expression. RESULTS: Loss of yersiniabactin decreased the growth of LF82 in competitive conditions, reducing the ability of LF82 to adhere to and invade T84 cells and to colonize the intestinal tract of CEABAC10 mice. However, yersiniabactin deficiency increased LF82 intracellular replication. Mechanistically, a functional yersiniabactin is necessary for LF82-induced expression of HIF-1α, which is implicated in autophagy activation in infected cells. CONCLUSION: Our study highlights a novel role for yersiniabactin siderophore in AIEC-host interaction. Indeed, yersiniabactin, which is an advantage for AIEC to growth in a competitive environment, could be a disadvantage for the bacteria as it activates autophagy, a key host defense mechanism, leading to bacterial clearance.


Subject(s)
Autophagy , Crohn Disease/etiology , Escherichia coli Infections/complications , Escherichia coli/pathogenicity , Intestinal Mucosa/physiopathology , Phenols/metabolism , Thiazoles/metabolism , Animals , Crohn Disease/physiopathology , Escherichia coli/metabolism , Escherichia coli Infections/physiopathology , Male , Mice , Mice, Transgenic
10.
Cancers (Basel) ; 13(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923277

ABSTRACT

BACKGROUND: Escherichia coli producing the genotoxin colibactin (CoPEC or colibactin-producing E. coli) abnormally colonize the colonic mucosa of colorectal cancer (CRC) patients. We previously showed that deficiency of autophagy in intestinal epithelial cells (IECs) enhances CoPEC-induced colorectal carcinogenesis in ApcMin/+ mice. Here, we tested if CoPEC trigger tumorigenesis in a mouse model lacking genetic susceptibility or the use of carcinogen. METHODS: Mice with autophagy deficiency in IECs (Atg16l1∆IEC) or wild-type mice (Atg16l1flox/flox) were infected with the CoPEC 11G5 strain or the mutant 11G5∆clbQ incapable of producing colibactin and subjected to 12 cycles of DSS treatment to induce chronic colitis. Mouse colons were used for histological assessment, immunohistochemical and immunoblot analyses for DNA damage marker. Results: 11G5 or 11G5∆clbQ infection increased clinical and histological inflammation scores, and these were further enhanced by IEC-specific autophagy deficiency. 11G5 infection, but not 11G5∆clbQ infection, triggered the formation of invasive carcinomas, and this was further increased by autophagy deficiency. The increase in invasive carcinomas was correlated with enhanced DNA damage and independent of inflammation. Conclusions: CoPEC induce colorectal carcinogenesis in a CRC mouse model lacking genetic susceptibility and carcinogen. This work highlights the role of (i) CoPEC as a driver of CRC development, and (ii) autophagy in inhibiting the carcinogenic properties of CoPEC.

11.
Gut Microbes ; 13(1): 1-18, 2021.
Article in English | MEDLINE | ID: mdl-33769191

ABSTRACT

Crohn's disease (CD) is a chronic and disabling inflammatory disorder of the gut that is profoundly influenced by intestinal microbiota composition, host genetics and environmental factors. Several groups worldwide have described an imbalance of the gut microbiome composition, called dysbiosis, in CD patients, with an increase in Proteobacteria and Bacteroidetes and a decrease in Firmicutes. A high prevalence of adherent-invasive Escherichia coli (AIEC) pathobionts has been identified in the intestinal mucosa of CD patients. A significant loss in the bacteria that produce short-chain fatty acids (SCFAs) with anti-inflammatory properties, such as propionate, is also a consequence of dysbiosis in CD patients. Here, the AIEC reference strain LF82 was able to degrade propionate in the gut, which was sufficient to counteract the anti-inflammatory effect of propionate both in in vitro models and in mice with DSS-induced colitis. The consumption of propionate by AIEC pathobionts leads to an increase in TNF-α production by macrophages upon infection through the bacterial methyl-citrate pathway. To induce the protective effects of SCFAs on the inflamed gut, we used a G-protein-coupled receptor 43 agonist (GPR43 agonist) that is not metabolizable by intestinal bacteria. Interestingly, this agonist showed anti-inflammatory properties and decreased the severity of colitis in AIEC-infected mice, as assessed by an improvement in the disease activity index (DAI) and a decrease in AIEC pathobiont encroachment. Taken together, these results highlight the effectiveness of GPR43 agonist treatment in the control of gut inflammation and improved our understanding of the ability of AIEC to modulate propionate availability to create an infectious niche to its advantage.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Escherichia coli/metabolism , Propionates/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Bacterial Adhesion , Colitis, Ulcerative/metabolism , Cytokines/metabolism , Dysbiosis/microbiology , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Intestinal Mucosa/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice , Propionates/pharmacology , RAW 264.7 Cells
12.
Front Microbiol ; 11: 2065, 2020.
Article in English | MEDLINE | ID: mdl-33101219

ABSTRACT

Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.

13.
Microorganisms ; 8(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784656

ABSTRACT

Adherent-invasive Escherichia coli (AIEC), which abnormally colonize the ileal mucosa of Crohn's disease (CD) patients, are able to invade intestinal epithelial cells (IECs) and translocate through M cells overlying Peyer's patches. The levels of microRNA (miRNA) and gene expression in IECs and M cells upon AIEC infection have not been investigated. Here, we used human intestinal epithelial Caco-2 monolayers and an in vitro M-cell model of AIEC translocation to analyze comprehensive miRNA and gene profiling under basal condition and upon infection with the reference AIEC LF82 strain. Our results showed that AIEC LF82 translocated through M cells but not Caco-2 monolayers. Both differential gene expression and miRNA profile in M cells compared to Caco-2 cells were obtained. In addition, AIEC infection induces changes in gene and miRNA profiles in both Caco-2 and M cells. In silico analysis showed that certain genes dysregulated upon AIEC infection were potential targets of AIEC-dysregulated miRNAs, suggesting a miRNA-mediated regulation of gene expression during AIEC infection in Caco-2, as well as M cells. This study facilitates the discovery of M cell-specific and AIEC response-specific gene-miRNA signature and enhances the molecular understanding of M cell biology under basal condition and in response to infection with CD-associated AIEC.

14.
Gut Microbes ; 11(6): 1677-1694, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32583714

ABSTRACT

Adherent-invasive E. coli (AIEC), which abnormally colonize the intestinal mucosa of Crohn's disease (CD) patients, are able to adhere to and invade intestinal epithelial cells (IECs), survive and replicate within macrophages and induce a pro-inflammatory response. AIEC infection of IECs induces secretion of exosomes that increase AIEC replication in exosome-receiving IECs and macrophages. Here, we investigated the mechanism underlying the increased AIEC replication in cells receiving exosomes from AIEC-infected cells. Exosomes released by uninfected human intestinal epithelial T84 cells (Exo-uninfected) or by T84 cells infected with the clinical AIEC LF82 strain (Exo-LF82), the nonpathogenic E. coli K12 strain (Exo-K12) or the commensal E. coli HS strain (Exo-HS) were purified and used to stimulate T84 cells. Stimulation of T84 cells with Exo-LF82 inhibited autophagy compared with Exo-uninfected, Exo-K12 and Exo-HS. qRT-PCR analysis revealed increased levels of miR-30c and miR-130a in Exo-LF82 compared to Exo-uninfected, Exo-K12 and Exo-HS. These miRNAs were transferred via exosomes to recipient cells, in which they targeted and inhibited ATG5 and ATG16L1 expression and thereby autophagy response, thus favoring AIEC intracellular replication. Inhibition of these miRNAs in exosome-donor cells infected with AIEC LF82 abolished the increase in miR-30c and miR-130a levels in the released Exo-LF82 and in Exo-LF82-receiving cells, thus suppressing the inhibitory effect of Exo-LF82 on ATG5 and ATG16L1 expression and on autophagy-mediated AIEC clearance in Exo-LF82-receiving cells. Our study shows that upon AIEC infection, IECs secrete exosomes that can transfer specific miRNAs to recipient IECs, inhibiting autophagy-mediated clearance of intracellular AIEC.


Subject(s)
Autophagy , Crohn Disease/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/physiology , Exosomes/microbiology , MicroRNAs/metabolism , Animals , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Bacterial Adhesion , Biological Transport , Cell Line , Crohn Disease/genetics , Crohn Disease/metabolism , Crohn Disease/physiopathology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Infections/physiopathology , Exosomes/genetics , Exosomes/metabolism , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , MicroRNAs/genetics
15.
Emerg Infect Dis ; 26(7): 1529-1533, 2020 07.
Article in English | MEDLINE | ID: mdl-32568057

ABSTRACT

We recovered 2 carbapenem-resistant K2-ST86 hypermucoviscous Klebsiella pneumoniae isolates from patients in France. The isolates had genetic attributes of hypervirulent K. pneumoniae but differed in ability to cause mouse lethality. Convergence of hypervirulent K. pneumoniae toward resistance could cause a health crisis because such strains could be responsible for severe and untreatable infections.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , France/epidemiology , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Mice , Virulence
16.
Nature ; 580(7802): 269-273, 2020 04.
Article in English | MEDLINE | ID: mdl-32106218

ABSTRACT

Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Genomic Islands/genetics , Mutagenesis , Mutation , Coculture Techniques , Cohort Studies , Consensus Sequence , DNA Damage , Gastrointestinal Microbiome , Humans , Organoids/cytology , Organoids/metabolism , Organoids/microbiology , Peptides/genetics , Polyketides
17.
Gastroenterology ; 158(5): 1373-1388, 2020 04.
Article in English | MEDLINE | ID: mdl-31917256

ABSTRACT

BACKGROUND & AIMS: Colibactin-producing Escherichia coli (CoPEC) colonize the colonic mucosa of a higher proportion of patients with vs without colorectal cancer (CRC) and promote colorectal carcinogenesis in susceptible mouse models of CRC. Autophagy degrades cytoplasmic contents, including intracellular pathogens, via lysosomes and regulates intestinal homeostasis. We investigated whether inhibiting autophagy affects colorectal carcinogenesis in susceptible mice infected with CoPEC. METHODS: Human intestinal epithelial cells (IECs) (HCT-116) were infected with a strain of CoPEC (11G5 strain) isolated from a patient or a mutant strain that does not produce colibactin (11G5ΔclbQ). Levels of ATG5, ATG16L1, and SQSTM1 (also called p62) were knocked down in HCT-116 cells using small interfering RNAs. ApcMin/+ mice and ApcMin/+ mice with IEC-specific disruption of Atg16l1 (ApcMin/+/Atg16l1ΔIEC) were infected with 11G5 or 11G5ΔclbQ. Colonic tissues were collected from mice and analyzed for tumor size and number and by immunohistochemical staining, immunoblot, and quantitative reverse transcription polymerase chain reaction for markers of autophagy, DNA damage, cell proliferation, and inflammation. We analyzed levels of messenger RNAs (mRNAs) encoding proteins involved in autophagy in colonic mucosal tissues from patients with sporadic CRC colonized with vs without CoPEC by quantitative reverse-transcription polymerase chain reaction. RESULTS: Patient colonic mucosa with CoPEC colonization had higher levels of mRNAs encoding proteins involved in autophagy than colonic mucosa without these bacteria. Infection of cultured IECs with 11G5 induced autophagy and DNA damage repair, whereas infection with 11G5ΔclbQ did not. Knockdown of ATG5 in HCT-116 cells increased numbers of intracellular 11G5, secretion of interleukin (IL) 6 and IL8, and markers of DNA double-strand breaks but reduced markers of DNA repair, indicating that autophagy is required for bacteria-induced DNA damage repair. Knockdown of ATG5 in HCT-116 cells increased 11G5-induced senescence, promoting proliferation of uninfected cells. Under uninfected condition, ApcMin/+/Atg16l1ΔIEC mice developed fewer and smaller colon tumors than ApcMin/+ mice. However, after infection with 11G5, ApcMin/+/Atg16l1ΔIEC mice developed more and larger tumors, with a significant increase in mean histologic score, than infected ApcMin/+ mice. Increased levels of Il6, Tnf, and Cxcl1 mRNAs, decreased level of Il10 mRNA, and increased markers of DNA double-strand breaks and proliferation were observed in the colonic mucosa of 11G5-infected ApcMin/+/Atg16l1ΔIEC mice vs 11G5-infected ApcMin/+ mice. CONCLUSION: Infection of IECs and susceptible mice with CoPEC promotes autophagy, which is required to prevent colorectal tumorigenesis. Loss of ATG16L1 from IECs increases markers of inflammation, DNA damage, and cell proliferation and increases colorectal tumorigenesis in 11G5-infected ApcMin/+ mice. These findings indicate the importance of autophagy in response to CoPEC infection, and strategies to induce autophagy might be developed for patients with CRC and CoPEC colonization.


Subject(s)
Autophagy , Carcinogenesis/immunology , Colon/microbiology , Colonic Neoplasms/immunology , Intestinal Mucosa/microbiology , Adenomatous Polyposis Coli Protein/genetics , Animals , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/immunology , Autophagy-Related Proteins/metabolism , Carcinogenesis/drug effects , Cell Proliferation , Colon/immunology , Colon/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/pathology , Escherichia coli/immunology , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HCT116 Cells , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Mice , Mice, Transgenic , Peptides/toxicity , Polyketides/toxicity , RNA, Small Interfering/metabolism
18.
Sci Rep ; 9(1): 2175, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778122

ABSTRACT

The adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of Crohn's disease patients, adhere to intestinal epithelial cells, invade them and exacerbate intestinal inflammation. The high nutrient competition between the commensal microbiota and AIEC pathobiont requires the latter to occupy their own metabolic niches to survive and proliferate within the gut. In this study, a global RNA sequencing of AIEC strain LF82 has been used to observe the impact of bile salts on the expression of metabolic genes. The results showed a global up-regulation of genes involved in degradation and a down-regulation of those implicated in biosynthesis. The main up-regulated degradation pathways were ethanolamine, 1,2-propanediol and citrate utilization, as well as the methyl-citrate pathway. Our study reveals that ethanolamine utilization bestows a competitive advantage of AIEC strains that are metabolically capable of its degradation in the presence of bile salts. We observed that bile salts activated secondary metabolism pathways that communicate to provide an energy benefit to AIEC. Bile salts may be used by AIEC as an environmental signal to promote their colonization.


Subject(s)
Bile Acids and Salts/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Acetyl Coenzyme A/metabolism , Adaptation, Physiological , Animals , Bacterial Adhesion , Crohn Disease/microbiology , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Ethanolamine/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Genes, Bacterial/drug effects , Host Microbial Interactions/drug effects , Humans , Ileum/microbiology , Intestinal Mucosa/microbiology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred C57BL , Propylene Glycol/metabolism , Up-Regulation/drug effects
19.
Cells ; 8(1)2019 01 09.
Article in English | MEDLINE | ID: mdl-30634511

ABSTRACT

The intestinal mucosa of Crohn's disease (CD) patients is abnormally colonized with adherent-invasive Escherichia coli (AIEC) that are able to adhere to and to invade intestinal epithelial cells (IECs), to survive in macrophages, and to induce a pro-inflammatory response. AIEC persist in the intestine, and induce inflammation in CEABAC10 transgenic mice expressing human CAECAM6, the receptor for AIEC. SUMOylation is a eukaryotic-reversible post-translational modification, in which SUMO, an ubiquitin-like polypeptide, is covalently linked to target proteins. Here, we investigated the role of SUMOylation in host responses to AIEC infection. We found that infection with the AIEC LF82 reference strain markedly decreased the levels of SUMO-conjugated proteins in human intestinal epithelial T84 cells. This was also observed in IECs from LF82-infected CEABAC10 transgenic mice. LF82-induced deSUMOylation in IECs was due in part to increased level of microRNA (miR)-18, which targets PIAS3 mRNA encoding a protein involved in SUMOylation. Over-expression of SUMOs in T84 cells induced autophagy, leading to a significant decrease in the number of intracellular LF82. Consistently, a decreased expression of UBC9, a protein necessary for SUMOylation, was accompanied with a decrease of LF82-induced autophagy, increasing bacterial intracellular proliferation and inflammation. Finally, the inhibition of miR-18 significantly decreased the number of intracellular LF82. In conclusion, our results suggest that AIEC inhibits the autophagy response to replicate intracellularly by manipulating host SUMOylation.


Subject(s)
Autophagy , Crohn Disease/microbiology , Escherichia coli Infections/complications , Intestinal Mucosa/metabolism , Sumoylation , Animals , Bacterial Adhesion , Cell Line, Tumor , Crohn Disease/metabolism , Escherichia coli/pathogenicity , Humans , Mice , Mice, Transgenic , Protein Inhibitors of Activated STAT/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
20.
Sci Rep ; 8(1): 12301, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120269

ABSTRACT

A high prevalence of adherent-invasive E. coli (AIEC) in the intestinal mucosa of Crohn's disease patients has been shown. AIEC colonize the intestine and induce inflammation in genetically predisposed mouse models including CEABAC10 transgenic (Tg) mice expressing human CEACAM6-receptor for AIEC and eif2ak4-/- mice exhibiting autophagy defect in response to AIEC infection. Here, we aimed at investigating whether gut microbiota modification contributes to AIEC-induced intestinal inflammation in these mouse models. For this, eif2ak4+/+ and eif2ak4-/- mice or CEABAC10 Tg mice invalidated for Eif2ak4 gene (Tg/eif2ak4-/-) or not (Tg/eif2ak4+/+) were infected with the AIEC reference strain LF82 or the non-pathogenic E. coli K12 MG1655 strain. In all mouse groups, LF82 colonized the gut better and longer than MG1655. No difference in fecal microbiota composition was observed in eif2ak4+/+ and eif2ak4-/- mice before infection and at day 1 and 4 post-infection. LF82-infected eif2ak4-/- mice exhibited altered fecal microbiota composition at day 14 and 21 post-infection and increased fecal lipocalin-2 level at day 21 post-infection compared to other groups, indicating that intestinal inflammation developed after microbiota modification. Similar results were obtained for LF82-infected Tg/eif2ak4-/- mice. These results suggest that in genetically predisposed hosts, AIEC colonization might induce chronic intestinal inflammation by altering the gut microbiota composition.


Subject(s)
Escherichia coli K12/isolation & purification , Gastrointestinal Microbiome/physiology , Protein Serine-Threonine Kinases/deficiency , Animals , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli K12/genetics , Female , Gastrointestinal Microbiome/genetics , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...